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Abstract. The study focuses on an adaptive finite element method for quasi time depen-
dent problems in solid mechanics. Especially in the field of nonlinear materials problems,
stable and robust finite element methods are needed to solve problems with prescribed error
tolerance. Increasing but also decreasing plastic areas over the whole time range require
adaptive techniques which minimize the calculation time. For this error indicators with
computable bounds are necessary to control the adaptive finite element process.

We begin by formulating the equations for the flow theory of Prandtl–Reuss. Using
the Maximum of Plastic Dissipation we end up in the well known primal and dual mixed
formulation of the IBV problem of plasticity. These variational inequalities are the starting
point for developing error estimators for standard Bubnov–Galerkin finite elements.
A viscoplastic regularisation technique is used to transform the variational inequality into
a nonlinear variational equality.

Then a short review on classical error estimation techniques for PDEs will be given.
Later on the well known global explicit residual based error estimator of Babuška &

Rheinboldt [2] will be extended into a general framework to estimate local quantities.
This concept can be applied for a large range of Galerkin–type finite element problems.
The achieved goal oriented error estimator will lead to an optimized mesh for a minimized
error |e(x̄)| of a local quantity in x = x̄. The presented error estimation technique will be
verified by a numerical example.
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1 INTRODUCTION

In the framework of time dependent or quasi time dependent problems in solid mechanics
the computational efficiency requires an adaption of the time and space discretisation.

Therefore a posteriori error estimators have to be included in the adaptive finite
element process to generate efficient and reliable or – in other words – optimal meshes.
In a general setting we want to present error estimators for local quantities, e.g. for
maximum strains or selected displacements. To derive such goal oriented estimates, we
have to introduce a dual problem corresponding to the strong form of the underlying
primal problem, Eriksson, Estep, Hansbo & Johnson [10], Becker & Rannacher

[4], and Cirak & Ramm [6]. In the context of the flow theory of elastoplasticity this
concept has been extensively elaborated by Suttmeier & Rannacher [19] and Cirak &

Ramm [7]. On the basis of these contributions the objective of the present study is set
once again the stage in a rather general framework allowing for extensions in different
directions during the presentation. These will be the application for softening materials
using a viscoplastic regularization and the evaluation of the dual problem by different
techniques like local Neumann problems.

2 INITIAL BOUNDARY VALUE PROBLEM FOR PRANDTL–REUSS
PLASTICITY

The equilibrium equations for a bounded domain Ω ∈ R
n with prescribed displacements

uD on the Dirichlet boundary ΓD and traction forces g on the Neumann boundary ΓN

are given by
−div σ(u) = f in Ω

u = uD on ΓD

n · σ(u) = g on ΓN

(1)

Assuming small strains, the strain tensor reads

ε̇ = ε̇el + ε̇pl

ε = ∇symu
(2)

Further on the free Helmholtz–energy Ψ and the internal variables q = (εpl, α) are
given. Isotropic hardening is characterized by the parameter α.

Ψ = Ψ(ε, q) = Ψ(ε, εpl, α)

=
1

2
κ (tr εel)2 + µ tr (εel)2 +

∫ α

0

φ(α)
(3)

The material parameter κ is the bulk modulus and µ the second Lamé constant. The
given actual yield stress φ(α) = σy + K̄α depends on isotropic hardening. Here σy is
the one-dimensional yield stress and K̄ the isotropic hardening modulus. A nonlinear
relationship for the yield stress combined with kinematic hardening can be applied in
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a straightforward manner. Evaluating the Clausius–Duhem inequality (second law of
thermodynamics) we get the dissipation inequality

Dpl = σ : ε̇pl − φ α̇ ≥ 0 (4)

with the yield function Φ(σ, φ) = ‖dev σ‖ − φ(α) ≤ 0. Using the Postulate of Maximum
Plastic Dissipation

σ : ε̇pl − φ α̇ ≥ τ : ε̇pl − p α̇ ∀ τ ∈ E , E = {τ : Φ(τ , p) ≤ 0} (5)

which means that among all possibles stress states τ satisfying the yield condition the
stress state σ which maximizes Dpl(τ , p; ε̇pl, α̇) is the actual stress state. Transforming
the constraint optimization problem, given as a minimization problem −Dpl(τ , p; ε̇pl, α̇)
into a sequence of unconstrained problems by introducing a Lagrange multiplier γ we end
up in the classical evolution equations, Luenberger [15], Simo & Hughes [20].

Lpl(τ , p, γ̇; ε̇pl, α̇) = −τ : ε̇pl + p α̇ + γ̇Φ(τ , p)

∂Lpl(τ , p, γ̇; ε̇pl, α̇)

∂τ
= −ε̇pl + γ̇

∂Φ

∂τ
= 0

∂Lpl(τ , p, γ̇; ε̇pl, α̇)

∂p
= α̇ + γ̇

∂Φ

∂p
= 0

(6)

with the standard Kuhn–Tucker and the consistency condition

γ̇ ≥ 0, Φ(σ, φ) ≤ 0, γ̇ Φ(σ, φ) = 0, Φ̇γ̇ = 0 (7)

3 VARIATIONAL FORMULATION

In the following section we want to present the variational inequalities for classical Prandtl–
Reuss plasticity, Duvaut & Lions [9], Johnson [13] and Han & Reddy [11]. Intro-
ducing the following function spaces:

where: H := L2(Ω,Rn), S := L2(Ω,R(n×n))

Sdiv := {τ ∈ S, div τ ∈ H}
V := {v ∈ H1

0(Ω)}, E = ΠS := {τ ∈ S, Φ(τ , p) ≤ 0}
(8)

Now we use the Postulate of Maximum Plastic Dissipation and introduce the velocities
u̇ = ∂u

∂t
. After the integration over the space domain Ω we add the weak form of the

equilibrium equation and end up in the well known dual–mixed form

(C−1 : σ̇, τ − σ) + (u̇, div τ − div σ)− (div σ, v) ≥ (f , v) ∀{v, τ} ∈ H × Ediv
0 (9)
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and after partial integration we get the primal–mixed form

(C−1 : σ̇, τ − σ)− (ε̇, τ − σ) + a(u, v) ≥ (f , v) + (g, v)ΓN
∀{v, τ} ∈ V × E (10)

The bilinear form a(.., ..) is associated with the dual variables and C is the 4th order
elasticity tensor:

a(u, v) =

∫
Ω

ε(u) : C : ε(v) (11)

Next we involve some viscoplastic regularization, Simo & Hughes [20]. The viscoplastic
regularization of the rate–independent Prandtl–Reuss equations has the effect, that
the governing equations remain hyperbolic in the case of negative hardening. This is
essential for softening materials to get mesh independent numerical solutions.
First we consider the constrained minimization problem eq. (6) in which the solution is
σ ∈ E .

min
τ∈Eσ

{−Dpl(τ , p; ε̇pl, α̇)} (12)

with Dvp
η = τ : ε̇vp − p α̇ (13)

Associated with this problem is the unconstrained minimisation problem with the solution
τ ∈ S

min
τ∈Sσ

{−Dvp
η (τ , p; ε̇pl, α̇)} (14)

with Dvp
η = τ : ε̇vp − p α̇ +

1

η
(Φ(τ , p)) (15)

η ∈ [0,∞] is a penalty parameter. The conditions to involve such a penalty regularisation
technique are described for example in Luenberger [15]. The constraint, here the yield
function Φ, has to be a C1 continuous function.

∂Dvp
η

∂p
= −α̇ +

1

η
〈Φ〉∂Φ

∂p
!
= 0 (16)

∂Dvp
η

∂τ
= ε̇vp +

1

η
〈Φ〉∂Φ

∂τ
!
= 0 (17)

⇒ ε̇vp = −1

η
〈Φ〉∂Φ

∂τ
=

1

η

{
devσ − σy

‖devσ‖devσ
}

!
=

devσ −Πdevσ

η
(18)

From a more mechanical point of view the obtained evolution equations follow the classical
Perzyna–viscoplasticity model, [18]. The physical interpretation of the penalty (fluidity)
factor η is the relaxation time which is described by η/2µ. The projection Π is given in eq
(22). It is apparent that we obtain the Prandtl–Reuss solution for η → 0. The proof
of this result is straightforward and can also be found in Luenberger [15].
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Using the weak form of eq. (2a) and inserting the regularized (viscoplastic) strains eq.
(18)

(ε̇(u), τ ) =
1

η
(devσ − Π devσ, τ ) + (C−1 : σ̇, τ ) ∀{v, τ} ∈ V × S (19)

and adding the weak form of the equilibrium equation we end up in the regularized pri-
mal mixed form as a (nonlinear) variational equality, Rannacher & Suttmeier [19],
Duvaut & Lions [9] which is the starting point for developing our error estimators.

(C−1 : σ̇−ε̇(u), τ )+
1

η
(devσ−Π devσ, τ )+a(u, v) = (f , v)+(g, v)ΓN

∀{v, τ} ∈ V×S
(20)

Eliminating the stresses τ from eq. (20) we obtain the primal form as a nonlinear vari-
ational equation. This is the governing weak form for the present pure displacement
approach.

(Π (C : ε(u)), ε(v)) = (f , v) + (g, v)ΓN
∀v ∈ V (21)

with the projection as a further equation

Π devτ :=




devτ ‖τ‖ ≤ σy

−φ(α)
devτ

‖devτ‖ ‖τ‖ > σy

(22)

4 DISCRETIZATION SCHEMES

Choosing some subintervalls Ik := (Tk−1, Tk) with the length |Ik| = ∆T and integrate the
regularised problem (20) over one time-step Ik we obtain∫ Tk

Tk−1

(C−1 : σ̇−ε̇(u), τ )+

∫ Tk

Tk−1

1

η
(σ−Πσ, τ )+

∫ Tk

Tk−1

a(u, v) =

∫ Tk

Tk−1

(f , v)+

∫ Tk

Tk−1

(g, v)ΓN

(23)
and applying the backward Euler–integration scheme which reads

xTk = xTk−1 +

∫ Tk

Tk−1

f (t) and

∫ Tk

Tk−1

f (t) = ∆Tf (T k) (24)

This is leading to a semi–discrete form of our regularised primal mixed form for an actual
time step

(C−1 : σTk − C−1 : σTk−1 , τ )−∆T (εTk , τ )

+
∆T

η
(σTk − ΠσTk , τ ) + ∆T (σTk , ε)

= ∆T (fTk , v) + ∆T (gTk , v)ΓN

(25)
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Instead of using the simple backward–Euler scheme to integrate eq. (20) we also can
apply (embedded) Runge–Kutta integration schemes. For this standard techniques
from ODEs can be used to estimate the time–stepping error, Diebels et al. [8].

Another possibility is using a Galerkin formulation in space and time. For this the
coupled space–time error can be captured.

5 ERROR ESTIMATION FOR THE REGULARISED PROBLEM

Next we will continue estimating the pure discretisation error in space domain. Due to the
primal or displacement approach the weak form of our problem, which can be interpreted
as a semi–discrete equation (continuous in space, discretised in time domain) is given by

(Π (C : εTk(u)), ε(v)) = (fTk , v) + (gTk , v)Γn ∀ v ∈ V (26)

where we could define a bilinear form

a(u, v) := (Π (C : εTk(u)), ε(v)) (27)

and a linear form
l(v) := (fTk , v) + (gTk , v)Γn (28)

with
a(u, v) = l(v) ∀ v ∈ V (29)

For this we can formulate our finite element problem: find uh such that

a(uh, vh) = l(vh) ∀{vh, uh} ∈ Vh ⊂ V (30)

Introducing the error in the displacements

e := u − uh (31)

and subtracting eq. (29) from eq. (30) gives us a Galerkin–orthogonality in the tan-
gential space at a discrete point Tk in the time domain [0, T ]. Here we would like to
mention the fundamental paper of Rannacher & Suttmeier [19], in which this orthog-
onality condition is called a nonlinear Galerkin–orthogonality. Using this Galerkin–
orthogonality

a(e, vh) = 0 (32)

and the definition of the error, we get the weak form of the error equation

a(e, v) = a(u − uh, v) = l(v)− a(uh, v)

=
∑
T∈Th

∫
T

ResT (uh) v +
∑
E∈Eh

∫
E

ResE(uh) v
(33)
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with the definition of the element inner error and the jump terms. The subscripts i,j
stand for two neighbouring elements joining the same element edge

ResT (uh) := divσ(uh) + f T ∈ Th

ResE(uh) :=




−1

2
(ni · σi(uh)− nj · σj(uh)) E ∈ Eh,Ω

g − n · σ(uh) E ∈ Eh,ΓN

0 E ∈ Eh,ΓD

(34)

where the jump terms are distributed by the factor 0.5 to the elements i,j .
Of course, it is possible to discretize eq. (33) and solve this problem by higher order

finite elements or on a finer grid which is leading to a kind of overkill solution. But instead
of discretising and solving this problem we want to estimate the discretization error.

Error estimators based on this kind of weak form of the error are leading to global
explicit or implicit residual based error estimators. The underlying optimization problem
for the finite element mesh can be formulated as: finding a mesh with uniform error
distribution in the whole domain Ω , Babuška & Rheinboldt [2], Bank & Weiser

[3], Ladèveze & Leguillon [14].
The goal of the error estimator we want to present further on differs totally from this
optimization problem. The new optimization problem is called: finding a optimal finite
element mesh for a minimised error of a local quantity, Tottenham [21], Becker &

Rannacher [4], and Cirak & Ramm [6]. The error–controlled local quantities can be
e.g. a displacement field in a small area, stress concentration close to the tip of a crack,
calculated by contour integrals, maximum values of plastic strains etc.

To estimate such local quantities we have to introduce a dual problem. This is a well
known technique in the field of the a priori analysis, Nitsche & Schatz [16], and was
developed for the a posteriori analysis by the group of Johnson. The right hand side of
this problem has to be chosen in a way that it is dual in the energy sense to the error–
controlled quantities. So the solution of the dual problem acts like a filter function or in
engineering words influence function for the residuals of the primal problem.

In contrast to the work of Johnson et al. and similar to the work of Rannacher

et al. the dual problem is discretised and solved numerically, often on the same mesh,
as the underlying primal problem.

We introduce a (linearised) dual problem:

−div σ(G) = δ(x̄) in Ω

G = 0 on ΓD

n · σ(G) = 0 on ΓN

(35)
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global error control local error control

explicit
residual based

a(e, v) = (Res(uh), v − vh) a(e, δ(x̄)) = (Res(uh), G − Gh)

implicit
residual based

a(e, v) = (Res(uh), v − vh)
+ local BVP for primal problem

a(e, δ(x̄)) = (Res(uh), G − Gh)
+ local BVP for dual problem

gradient type ‖e‖2 ≈
(σ�(uh)−σ(uh), ε

�(uh)−ε(uh))

a(e, δ(x̄)) ≈
(σ�(uh)− σ(uh), ε

�(Gh)− ε(Gh))

Table 1: classification of local and global error estimators

The solution of the dual problem is G and the right hand side δ(x̄) is a regularisation of
the Dirac–Delta function δ(x) so that the corresponding energy is bounded. If we use the
reciprocal theorem of Betti & Maxwell

(e, δ(x̄)) = −(e, div σ(G)) = (C : ∇e,∇G) = (Res, G) (36)

we end up in the local weak form of the error equation

a(e, δ(x̄)) = |e(x̄)| =
∑
T∈Th

∫
T

ResT (uh) G+
∑
E∈Eh

∫
E

ResE(uh) G (37)

Using the Galerkin–orthogonality we get

|e(x̄)| =
∑
T∈Th

∫
T

ResT (uh) (G − Gh) +
∑
E∈Eh

∫
E

ResE(uh) (G − Gh) (38)

To classify the possibilities we extend the definition of global error estimators due to
Verfuerth [22] and Ainsworth & Oden [1] to local error estimators, Table 1.

Applying the Hölder–inequality for integrals the error of the local variable is esti-
mated

|e(x̄)| ≤
∑
T∈Th

‖ResT (uh)‖ ‖G − Gh‖+
∑
E∈Eh

‖ResE(uh)‖ ‖G − Gh‖ (39)

Here we want to remark that we have several possibilities to estimate the error of the
dual problem. In this approach we solve the error of the dual problem solving 2nd order
difference quotient.
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[h̄]

100% [elements]

2.0

0.5

1.0
nr nc

coarsen

refine

mapped density function

given density function

Figure 1: fixed fraction method for advancing front mesh generation

Standard interpolation operators

|e(x̄)| ≤
∑
T∈Th

‖ResT (uh)‖ ‖G −ΠhG‖+
∑
E∈Eh

‖ResE(uh)‖ ‖G −ΠhG‖ (40)

are introduced, Braess [5]

‖G −ΠhG‖0,T ≤ Ci,1h
2
T |G|2,T (41)

‖G −ΠhG‖0,E ≤ Ci,2h
3
2
T |G|2,T (42)

with interpolation constants Ci,1 and Ci,2 and a characteristic element length hT . Inserting
the interpolation estimates in the eq. (40) we obtain

|e(x̄)| ≤ η̄ := Ci,3

{ ∑
T∈Th

h2
T‖ResT (uh)‖ |G|2,T +

∑
E∈Eh

h
3
2
T‖ResE(uh)‖ |G|2,T

}
(43)

Assuming for simplicity Ci = 1 all terms of the right side of eq. (43) are known and
we are able to calculate the element–wise error. It needs to be said that we get sharper
error bounds if we do not apply the Hölder inequality which is roughly speaking a tough
estimation.
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f = λ · 100MPa

[λ]

[t]

Young’s modulus E = 206899.94MPa

Poisson’s ratio ν = 0.29
yield stress σy = 450
hardening K̄ = 0

plane strain
Q2 elements, 2 x 2 GP, 63 fixed load steps
local error control of ux at node 2

Figure 2: benchmark problem, stretched plane strain plate with a hole

6 MESH REFINEMENT STRATEGY

The discretised linearised boundary value problem eq. (26) is solved in an adaptive
process. After solving the nonlinear problem by using a Newton–Raphson iteration the
a posteriori error indicator eq. (43) is calculated at the new equilibrium point. For this
the linearised dual problem based on the actual properties of the nonlinear problem has
to be evaluated. By saving the triangularised stiffness matrix for the equilibrium state
of the primal problem we only have to perform one additional backward substitution
for the dual problem. To estimate the error of the dual problem based on the discrete
solution Gh we have several possibilities, Table 1. Here we estimate the error explicitly by
calculating 2nd order difference quotient. By mapping the local error indicator η̄ onto a
density function which is based on a fixed fraction method we can apply a mesh generation
based e.g. on the advancing front technique, Figure 1. Here h̄ is a given characteristic
element length, e.g. the diameter of an element. The advantage of this approach is that
we can coarsen and refine a mesh with a given number of elements. That is important in
the case of calculating limit points. For these problems it is important to refine/coarsen
only at a given number of elements to reach convergence in the global Newton iteration.
If too many elements are refined/coarsened the mapping error could be too large and it
is possible to lose convergence. For the Prandtl–Reuss plasticity as a typical path–
dependent problem we have to transform the nodal variables uh and the set of internal
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variables q = (εpl, α) from the old mesh to the new mesh. The internal variables are
calculated at the Gauss points and are in our displacement approach C−1 continuous.
By mapping the internal variables to the Gauss points and applying a simple nodal av-
eraging technique we get ”improved” internal variables which are in C0. Then we map
the internal variables to the Gauss points of the new mesh. After mapping the nodal and
internal variables to the new mesh, we have to control the global equilibrium state. This
is done by minimising the residual forces in a further global Newton–Raphson iteration
step.

7 NUMERICAL EXAMPLE

This numerical example is a standard benchmark example [12]. A two dimensional square
plate with a hole is subjected to a constant boundary traction. Here we assume elastic–
perfectly plastic material without any hardening under plane strain conditions. Because
of the symmetry conditions we consider only a quarter of the problem in the numerical
calculation . We apply a cyclic loading process described in Figure 2. To test our local
error approach we are now interested in controlling the error of the horizontal displacement
ux at the point 2. In our adaptive finite element calculation our final mesh consists on
2934 Q2 elements with 17772 DOF and we apply 63 fixed load steps. No adaptive time–
stepping scheme was applied.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

[ux(2)]

[λ
]

local error control
reference solution

Figure 3: load displacement diagram

As we can see in the given load displacement diagram Figure 3 we can achieve a remarkably
good result compared to a solution based on a reference solution. The reference solution
was calculated with 65536 Q2/P1 elements with 197633 DOF and 205 load steps by
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Wieners [12].

8 CONCLUSIONS AND FUTURE WORK

The local or in other words goal oriented error estimator presented here could be applied
very efficiently to control local error quantities. In the framework presented here it could
be generally applied for plastic or viscoplastic materials. As we have pointed out the
additional numerical cost in a nonlinear analysis to solve the dual problem numerically is
negligible.

We want to remark, that the present error indicator eq. (43) is similar to the error
indicator proposed by Suttmeier & Rannacher [19]. The difference is the underlying
adaptive finite element scheme for viscoplastic problems, which will be shown by some
numerical examples with softening behaviour in the presentation. Because of the loss of
ellipticity in the underlying differential equations we need to introduce a regularisation
technique, e.g. the viscous regularisation mentioned above.

2536 DOF, 410 ele.
λ = 1.50

8042 DOF, 1319 ele.
λ = 4.10

9736 DOF, 1600 ele.
λ = 4.40

17772 DOF, 2934 ele.
λ = −4.00

Figure 4: sequence of refined meshes

In contrast to the local error indicator for Prandtl–Reuss plasticity proposed by Cirak
& Ramm [7] we do not use any smoothing procedures to evaluate the error of the primal
and dual solution in which a global energy norm error estimator is evaluated twice. In
the present approach the residuals of the primal problem can be calculated element–wise
as an explicit result of the primal solution. Only for the second order derivatives which
are needed to estimate the error of the dual problem a small patch–wise problem for the
element Ti and the adjacent elements Tk has to be solved.

Another adressed topic is to compare the different approaches for estimating the error
of the dual problem. For example the error of the dual part may be estimated by solving
local Neumann problems, Ohnimus et at. [17]. Through this we hope to improve the
local error estimator introducing sharper error bounds.
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[2] Babuška, I. & W. Rheinboldt [1978]. ‘Error estimates for adaptive finite element
computations.’ SIAM J. Numer. Anal., 15(4), pp. 736–754.

[3] Bank, R. & A. Weiser [1985]. ‘Some a posteriori error estimators for elliptic
partial differential equations.’ Math. Comp., 44, pp. 283–301.

[4] Becker, R. & R. Rannacher [1996]. ‘A feed–back approach to error control in
finite element methods.’ East-West J. Numer. Math., 4, pp. 237–264.

[5] Braess, D. [1997]. Finite element methods . Cambridge University Press.

[6] Cirak, F. & E. Ramm [1998]. ‘A-posteriori error estimation and adaptivity for
linear elasticity using the reciprocal theorem.’ Comp. Meth. in Appl. Mech. Eng.,
156, pp. 351–362.

[7] Cirak, F. & E. Ramm [2000]. ‘A posteriori error estimation and adaptivity for
elastoplasticity using the reciprocal theorem.’ Int. J. Num. Meth. Eng., 47, pp. 379–
393.

[8] Diebels, S., P. Ellsiepen & W. Ehlers [1999]. ‘Error–controlled Runge–Kutta
time integration of a viscoplastic hybrid two–phase model.’ Technische Mechanik ,
19, pp. 19–29.

[9] Duvaut, G. & J. Lions [1976]. Inequalities in mechanics and physics. A series of
comprehensive studies in mathematics. Springer–Verlag, Berlin.

[10] Eriksson, K., D. Estep, P. Hansbo & C. Johnson [1995]. ‘Introduction to
adaptive methods for differential equations.’ Acta Numerica, pp. 105–158.

[11] Han, W. & B. Reddy [1999]. Plasticity , volume 9 of Interdisciplinary Applied
Mathematics. Springer–Verlag, Berlin.

[12] Homepage of DFG–Paketantrag. Adaptive finite element methods in applied
mechanics. http://www.ibnm.uni-hannover.de/Forschung/Paketantrag/Bench–
mark/benchmark.html.

[13] Johnson, C. [1976]. ‘Existence theorems for plasticity problems.’ J. Math. pures et
appl., 55, pp. 431–444.
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